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Abstract

Parallel computers are becoming more powerful and
more complex in response to the demand for computing
power by scientists and engineers. Inevitably, new and
more complex 1/0 systems will be developed for these
systems. In particular we believe that the 1/0 system
must provide the programmer with the ability to ez-
plicitly manage storage (despite the trend toward com-
plex parallel file systems and caching schemes). One
method of doing so is to have a partitioned secondary
storage in which each processor owns a logical disk.
Along with operating system enhancements which al-
low overheads such as buffer copying to be avoided and
libraries to support optimal remapping of data, this
sort of I/0 system meels the needs of high performance
computing.

1 Introduction

The solution of Grand Challenge Problems will re-
quire computations which are too large to fit in the
memories of even the largest machines. The speed of
individual processors is growing too fast to be matched
with increased memory size economically. Successful
high performance programs will have to be designed
to run in the presence of a memory hierarchy. Great
efforts have already been made to optimize computa-
tions for the fastest end of the hierarchy — the use of
high speed registers and caches. The result has been
the creation of optimized codes such as those in the
BLAS. At least as large an effort must now be made to
address the slow end of the hierarchy — the use of sec-
ondary storage such as disks or even SRAM backing
stores.

The term I/O typically refers to the slow end of
the spectrum and often involves the transfer of data
between main memory and a disk system or between
machines. I/O is often left in the control of the op-
erating system (OS) such as in file systems and vir-
tual memory systems. While these systems may be
easy to use, their general nature makes them inefficient
for many specialized scientific applications. In these
cases, the I/O must be explicitly managed by the ap-
plications progammer either explicitly, or though calls
to libraries. In the future, programmers may be able
accomplish efficient I/O by providing “hints” to I/O
management systems in the operating system.

In this paper, we will describe our experiences in
producing high performance scientific codes that re-
quire the use of disks for temporary storage of data.
We will discuss both algorithmic issues (e.g., ways to
structure the code to reduce the I/O bottleneck) and
systems issues (e.g., features of the OS that can make
it easier to produce high performance codes). To il-
lustrate these issues, we will use LU factorization for
dense matrices. LU factorization is a common scien-
tific kernel used in the solution of linear systems and
the data movement is representative of many dense
matrix algorithms.

2 Characteristics of I/O

I/O can generally be divided into three phases: the
initial input of data, the maintenance of temporary
data, and the output of program results.

The initial input of data often involves the transfer
of data over HiPPI, from disk, or from another com-
puter. It is a one time operation, and the limiting
factor is often the speed of the hardware. Although
it can lead to significant overhead, it is rarely an in-
surmountable bottleneck. An important issue is the
format of the data. Because the input to one program
may be the output to another, data may not be input



in the most efficient format. Thus, the translation of
data from one format to another is an important op-
eration. We will have more to say about this later.

The output phase has similar characteristics to in-
put phase. As before, a translation of the data may
be necessary, such as in the display of data.

The handling of temporary values is much more
problematic. Temporary values must be both written
and read, and the order in which they are accessed
can change over time. If the management of tempo-
rary memory is not efficient, it can slow the whole
computation to a crawl. Virtual memory is one possi-
ble approach to maintaining temporary storage which
is being provided by vendors. While this simplifies the
programming, no virtual memory system can perform
as well as a code written by a programmer who under-
stands the algorithm being implemented; the overhead
of a virtual memory system often defeats the advan-
tage of using a parallel supercomputer, i.e., computa-
tional speed.

3 Systems for I/O

Our goal is to achieve high performance using large
numbers of processors, and we cannot afford to pay the
overhead of a general purpose memory management
system such as virtual memory. Instead, we will focus
on the explicit management of temporary data by a
programmer who understands the algorithm and can
tailor the I/O to the algorithm.

There are two approaches to I/O supporting this
type of use, the parallel file system (PFS) and what
we call partitioned secondary storage (PSS). In one
mode in which a parallel file system can operate, a
processor node accesses a single file that is distributed
over many I/O nodes by the operating system. (On
the paragon, each I/O node is connected to one RAID
array. On the nCUBE, each I/O node is connected
to a single disk.) If there are more I/O nodes than
compute nodes, this may result in improved disk—to—
memory transfer rates compared to rates from a sin-
gle disk to a single processor. However, if there are
more compute nodes than I/O nodes (the usual case in
massively parallel computers), then the PFS reduces
transfer rates due to increased system overhead and
conflicts between processors demanding I/O service.

The second mode in which a PFS can operate is
using global files, i.e., each file is shared by all pro-
cessors and is distributed across all I/O nodes. This
mode shares both the advantages and the drawbacks
of the shared memory paradigm in a massively parallel
computing environment.

In a PSS system, each processor has its own logi-
cal disk, and the data of a processor’s disk is treated
similarly to the data in its local memory: the proces-
sor will have sole control of this data. Any sharing of
data is done by explicit message passing, and thus the
PSS system strictly adheres to the distributed mem-
ory paradigm. The programming required to make
effective use of PSS is more complicated than that re-
quired for PFS or for a virtual memory system. How-
ever, we expect that anyone already programming in
distributed memory environment will be able to use
PSS easily and effectively.

The important feature of PSS is that the logical
disks can be treated as local secondary storage, and
this enables the programmer to control data format
and locality. The programmer can thus plan the data
format to match the computational requirements and
plan the overlap of I/O and computations to match
interprocessor communications. The programmer can
also plan the data format and I/O to maximize data
reuse.

4 Algorithmic issues

In the previous section, we advocated a PSS sys-
tem for I/O, which conforms to a distributed mem-
ory model of programming. In this model, the pro-
grammer has the flexibility /responsibility to extract
performance from the I/O subsystem by algorithmic
modifications. These include changing the data for-
mat on the disk to give more efficient access patterns,
or combinbing subproblems and redistributing loops
to reduce the amount of I/O or communications re-
quired. In this section, we discuss several algorithmic
issues in the context of an out—of-core LU factoriza-
tion code.

4.1 1I/0 complexity

One of the first steps in writing parallel algorithms
is to understand how much I/O and interprocessor
communication is required by the algorithm and the
tradeoffs between ease of programming and computa-
tional speed and I/O and communication. This type
of analysis often falls under the heading I/O complex-
ity.

An upper bound on the I/O required for LU factor-
ization (with or without pivoting) can be derived by
writing the algorithm recursively. We denote the LU
factorization of a matrix A by [L,U] = LU (A), where
L and U are the lower and upper triangular factors
respectively. We also subdivide the matrices A, L and



U into four submatrices and denote these submatrices
with subscripts. The LU factorization algorithm can
then be written as follows [4].

[Li1, U11] = LU(A11)
U2 = Lf&fh,z
Lis = 0
Usn = 0
Loy = A2,1Ufll
[La2, Uzl = LU(A22—La1Urp).

If we let n denote the size of the matrix A, M the
size of memory and B the size of an I/O request
across all processors, then the I/O complexities to
compute the products LI&ALQ, Az,lUfll, and Ly 10U 2
are O(n®/BvV/M) [2, 6, 8]. We can now express the
number of I/O operations to factor an n x n matrix,
Tru(n), by the recursion
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We note that the upper bound for LU factorization is
the same as that for matrix multiplication. We also
note that pivoting does not change the upper bound,
which can be explained by observing that the com-
plexity of rearranging the rows of a matrix is only
@] (nz/B). From a practical standpoint, pivoting re-
quires a finer subdividing of the matrix so that all
the submatrices holding any particular column can be
held in memory at the same time.

Because the recursive algorithm can be difficult to
implement, we describe a simpler algorithm and dis-
cuss its complexity. We begin by dividing the matrix
A into b column blocks of size n x k, where nk = O(M)
and denoting these blocks by A;, ¢ =1,...,b. Denot-
ing the corresponding components of L and U by L;

TLU(n)

and U;, 1 =1,...,b, we can write LU factorization as
follows.
fori=1,...,b
forj=1,...,¢1—1
update A; with L;
end for
compute L; and U;
end for.

The high order I/O terms in this algorithm arise from
the repeated reading of the L;. In particular L; has

approximately (nk — (i — 1/2)k?) entries and must be
read b — 7 times. Summing this up for z = 1,...,b,
we see that O(n*/M) entries must be read yielding an
I/O complexity of O(n*/M B).

The complexity of the second algorithm differs form
that of the first algorithm by a factor of n/v/M. A
partial solution to this problem is to overlap I/O with
computation. In particular, we note that the read
of Lj41 can be accomplished while L; is being used
for computations. This is, however, only a partial so-
lution; by providing buffer space for I/O, we reduce
the memory available for computations by a factor of
2, thereby increasing the amount of 1/0. Also, the
amount of I/0O is greater than the amount of compu-
ations by O(n) so that for very large matrices not all
the I/O can be hidden. (We remark here that for all
the experiments presented later in the paper, the I/O
time was dominated by the computation time.)

4.2 Numerical stability

In the previous subsection, we discussed the use
of I/O complexity in choosing an algorithm; however,
the primary concern of the programmer must be the
stability and correctness of the algorithm being imple-
mented. For example, even though column pivoting is
required for the stability of LU factorization for gen-
eral matrices, many early versions of out—of-core LU
factorization incorporated no pivoting or limited piv-
oting to allow operations on large square blocks that
did not contain entire columns. This enabled more ef-
ficient use of BLAS 3 routines and reduced the amount
of I/O required (even though, as we have shown, the
overall complexity cannot be reduced by this tech-
nique). While this may be fine for some matrices,
the disadvantage is that the resulting codes could not
be considered general purpose; the results depended
not only on the matrix, but also on the number and
configuration of the processors.

4.3 Data format

Once the algorithm and the decomposition of the
data to processors and disks have been chosen, the
format of the data must be chosen. For example, if
a matrix is needed by rows, it does not make sense
to store it on disk by columns. Similarly, if a ma-
trix is needed in blocks, as in the recursive algorithms
described above, it does not make sense to store it by
either rows or columns. Several reports have examined
this issue and found that pre— or post—permutations
of data lead to a substantially reduced running time
for many computations [3].



Sometimes a single computation will require data
in different formats for different subcomputations. At
other times, the input or output interface may require
data in a different format from that which is opti-
mal for the computation. Thus the ability to convert
between formats can be important. Several authors
have noted that using the I/O system alone to per-
form these conversions can be quite expensive. Typ-
ically data which is contiguous in large blocks in one
format is scattered in another. Since disk rates are
much lower when servicing scattered small requests,
the I/O for the scattered format will suffer. A bet-
ter alternative is to always read and write data to and
from the disks in the disks’ current large block format.
When data is needed in a new format, the intercon-
nection network can be used to reorder the data, and
then write to the disks in the new format [2].

In our most efficient implementation of column—
oriented LU factorization, we use two formats. The
first is used for the unfactored blocks of the matrix
where the matrix is stored by columns. The second is
used to store intermediate results and the final (fac-
tored) matrix. In this the column blocks are permuted
so that the lower triangular entries are stored contigu-
ously and are followed by the upper triangular entries.
Because the lower triangular portion must be read into
memory repeatedly, this results in less bookkeeping by
the program and larger blocks of data transferred.

5 Libraries

For scalability reasons among others, we have advo-
cated a PSS system for out—of-core algorithms, which,
as we have observed, imposes an additional burden on
the programmer. This burden can be relieved some-
what by the use of libraries.

One of the primary tasks of such a library must be
to convert data between various formats. One example
of this might be to convert a matrix stored in row for-
mat on 1024 virtual disks to one stored in block format
on 64 virtual disks. Another example would be to con-
vert the same matrix to a column format on one vir-
tual disk, where the virtual disk is distributed across
many physical disk in a PFS format. Many (if not
most) change of format changes can be written as bit—
permute—complement (BPC) or bit-matrix—multiply—
complement (BMMC) transformations. These have
been examined in detail in [2] and under other names
by several other authors.

Another task of such a library would be to transfer
to or from destinations other than disk. For example,

the destination might be main processor memory, a
HiPPI channel or a graphics frame buffer.

Finally, a useful addition to such a library would
be memory mapping services. This would relieve the
programmer of tasks such as the calculation of offsets
for data transfer and support other services such as
caching.

6 Implementations

The test algorithm for our I/O work has been the
column-oriented version of LU factorization. As dis-
cussed in earlier sections, there is a large amount of
I/0; however, this I/O can be hidden by computations
for “small” matrices. (Of course, the exact meaning
of “small” depends on the relative speeds of computa-
tions and I/O for a given machine.) We also use partial
pivoting to ensure numerical stability, and permute a
column block of the matrix after factoring to make
the lower and upper triangular portions of the matrix
contiguous within each processor’s secondary storage.

We have implemented this algorithm on both the
Intel Paragon and the nCUBE 2. The nCUBE 2 at
Sandia is a 1,024 node machine. Each node has 4
Mbytes of memory and is capable of 2.1 double preci-
sion Mflops/second using the BLAS library. The disk
system consists of 16, one Gbyte disks, each with its
own SCSI controller.

The Intel Paragon at Sandia has 1840 compute
nodes, each with two 1860 processors, one for compu-
tation and one for comunication. 528 nodes have 32
Mbytes of memory and the remaining nodes have 16
Mbytes of memory. Each node is capable of 45.9 dou-
ble precision Mflops/second using the BLAS DGEMM
routine. There are 48 I/O nodes available, each with
a RAID controller and five, one Gbyte disks.

For each machine we have developed versions that
run under the vendor-supplied operating systems and
versions that run under PUMA, an operating system
developed jointly by Sandia National laboratories and
the University of New Mexico [7], which implements
PSS. The results given later in this section are taken
from the nCUBE/PUMA version of the code. The

status of the other implementations is as follows.

¢ nCUBE/Vertex. The nCUBE-supplied software
that runs on the disk nodes cannot support the
high volume of I/O required by the algorithm.
For small problems running on 16 nodes, the
compuational rates are similar to those of the
nCUBE/PUMA version, while the I/O rates are
about half those achievable using the PSS.



e Paragon/PUMA. The I/O support routines in
PUMA have not been completed, and we are not
able to overlap compuatation and 1/O. We typi-
cally achieve computational rates in excess of 40
Mflops/node for large problems.

e Paragon/OSF. Due to large memory require-
ments by the operating system and communica-
tion buffer requirements, we have not been able
to factor large matrices.

Ideally, we would present experiments that make
use of the entire capacity of the machine. Unfortu-
nately, due to the cubic growth of computation time,
a single run of the largest matrices requires several
hours of computer time. Therefore, we instead present
two medium sized runs to demonstrate the ability to
overlap I/O with computation and several small sized
runs to highlight the dependency on available memory
and on the number of processors used.

Table 1 shows the results of running our LU factor-
ization algorithm for a 10,000 x 10,000 matrix on 64
processors varying the amount of memory available to
the algorithm. In the first run, each block of columns
could be made large enough to cover the matrix with
14 block, while in the second run, half the memory
was not used thereby halving the potential size of a
block and doubling the number of blocks necessary.
The increase in the number of blocks almost doubled
the amount of I/O done. The last column records
the amount of time spent doing I/O that could not be
overlapped with computation, which we note is almost
constant as predicted by the complexity results.

The increase in total time is almost entirely due to
increased interprocessor communication. The amount
of communication required is O(n?b,/p), where b is
the number of column blocks, and p is the number of
processors. Thus the memory size is important in that
it defines the grain size for the computation, but not
because it affects the amount of visible I/0O.

Table 2 shows the scaled efficiency for LU factoriza-
tion. We note that there is a substantial drop in scaled
efficiency in going from one to four processors, but
it then remains almost constant up to 64 processors.
This can be explained by the physical configuration of
the nCUBE, which determines how the PUMA OS as-
signs disks to processors in the PSS system. There are
sixteen disks, each with eight connections to the lower
512 processors of the nCUBE. Thus, there is one con-
nection to a disk for each cube of four processors, and
PUMA assigns these four processors to the same disk
to minimize traffic through the interprocessor commu-
nication network.

Table 3 shows the dependence of the total run time
and total I/O on both the number of processors and
the memory used for a 2, 048 x 2, 048 matrix. The non—
overlapped I/O time is not shown because the small
size of the matrix allowed effective caching of data by
the disk software in some cases. (Again, the small size
was chosen to enable us to do a larger number of runs.)
The results again show that the total I/O is inversely
proportional to the amount of memory available to the
program. The increase in total time, however, is the
result of increased interprocessor communication. The
data in Table 2 does show that the total I/O is almost
independent of the number of processors. Thus the
algorithm scales well to large numbers of processors.

7 Conclusions

In this paper we have discussed several aspects
of “out—of-core” programming on parallel machines.
This is part of the larger problem of moving data into
and out of these computers and is characterized by re-
peated reformatting and transfer of data to and from
secondary storage. In particular, we discussed the ad-
vantages and disadvantages of several paradigms for
disk usage and made the case that an efficient parti-
tioned secondary storage (PSS) is necessary for high
performance scientific computation.

We also discussed many of the programming issues
which arise when using a disk system for temporary
storage. These included data partitioning, data for-
mat, I/O complexity, numerical stability and the use
of libraries. In each of these discussions, we used LU
factorization as an example and in the end showed
that the use of PSS (the “block server” facility in the
PUMA operating system) leads to a very efficient out—
of-core LU code. We also showed that an important
feature of any I/O library or PSS system is the ability
to do background I/O. This enabled us to substan-
tially reduce the “visible” I/O time in LU factoriza-
tion.

Even though we used an LU factorization code to
demonstrate the ideas of parallel /O, most of the dis-
cussions in this paper apply equally well to any code
that requires repeated access to large blocks of data.
(The discussion of I/O complexity, of course, is specific
to LU.)
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Table 1: Times to factor a double precision 10,000 x 10,000 matrix using 64 processors on the nCUBE 2

number of column-block memory | total I/O total “visible” I/O
column blocks | size (bytes/proc) used (Mbytes) | time (sec) time (sec)
14 893,214 94% 4,924 6,320 85
27 463,148 49% 8,869 6,574 87

Table 2: Scaled efficiency for LU factorization on an nCUBE 2

p n total /0O total “visible” I/O | scaled
(Mbytes) | time (sec) time (sec) efficiency

1 1,250 77 742 15 1.00

4 | 2,500 308 1,585 54 0.94

16 | 5,000 1,231 3,146 55 0.94

64 | 10,000 4,924 6,320 59 0.94

Table 3: Times to factor a double precision 2,048 x 2,048 matrix on the nCUBE 2

number of column block memory | total I/O total
p | column blocks | size (bytes/proc) used (Mbytes) | time (sec)
16 4 524,800 55% 71 231
16 8 242,400 26% 132 254
32 2 525,312 55% 34 117
32 4 262,656 28% 71 126
32 8 131,328 14% 132 141
64 2 262,656 28% 34 67
64 4 131,328 14% 71 77
64 8 65,664 7% 132 99
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